如果想做成相关性图

不管是基因表达之间的相关性或者是基因与性状之间的关联,可以用R包‘tidyverse’和‘corrplot’实现

首先是录入数据的要求

举个栗子!

image-20210716102432133

录入数据如上所示

横坐标代表的是所有相关性的基因或者表型或者你需要的其他数据

纵坐标代表重复,重复一般越多越好,三个重复也不是不能做,但是不会出什么好结果,至少重复在4以上

以上数据存储为.csv格式


打开R

代码简单:

不过首先先确定运行文件夹image-20210716102827052

然后导入数据,编辑数据表格

rm(list = ls())
getwd();
workingDir = “.”;
setwd(workingDir);
library(tidyverse)
library(corrplot)
data=read.csv(“example.csv”)
rownames(data)=data$ID
data1=data[,-1]
data=data1

image-20210716102932528

image-20210716102940824

最后data的格式如上!

运行分析代码:

cor(data) %>% corrplot(method = “circle”,order = “hclust”,
type = “lower”,tl.srt = 45,tl.col = “black”)

image-20210716103111129

#下面是格式代码如有需要可自行运行

res1 <- cor.mtest(data)
cor(data)%>% corrplot(type=”lower”, order=”hclust”,tl.srt = 45,
tl.col = “black”,
p.mat = res1$p,insig = “p-value”,sig.level = -1)

cor(data)%>% corrplot(type=”lower”, order=”hclust”,
p.mat = res1$p,insig = “p-value”)

cor(data)%>% corrplot(type=”lower”,order=”hclust”,
p.mat = res1$p,insig = “blank”)

cor(data)%>% corrplot(type=”lower”,order=”hclust”,
p.mat = res1$p, sig.level = .05)

cor(data)%>% corrplot(type=”lower”,order=”hclust”,
p.mat = res1$p, sig.level = .01)

cor(data) %>% corrplot(type=”lower”, order=”hclust”,
p.mat = res1$p,insig = “label_sig”,
sig.level = c(.001, .01, .05),
pch.cex = .9, pch.col = “white”,
tl.srt = 45,tl.col = “black”)

image-20210716103224559